Transformasi Geometri
Transformasi digunakan untuk untuk memindahkan suatu titik atau bangun pada suatu bidang.
Transformasi geometri adalah bagian dari geometri yang membahas tentang perubahan (letak,bentuk , penyajian) yang didasarkan dengan gambar dan matriks.
Transformasi pada bidang terdiri dari 4 macam :
1. Pergeseran (Translasi)
2. Pencerminan (Refleksi)
3. Perputaran (Rotasi)
4. Perkalian (Dilatasi)
A. Pergeseran (Translasi)
Perpindahan titik-titik pada bidang dengan jarak dan arah tertentu yang diwakili oleh ruas garis berarah (vector) AB atau dengan suatu pasangan bilangan.
Transformasi geometri adalah bagian dari geometri yang membahas tentang perubahan (letak,bentuk , penyajian) yang didasarkan dengan gambar dan matriks.
Transformasi pada bidang terdiri dari 4 macam :
1. Pergeseran (Translasi)
2. Pencerminan (Refleksi)
3. Perputaran (Rotasi)
4. Perkalian (Dilatasi)
A. Pergeseran (Translasi)
Perpindahan titik-titik pada bidang dengan jarak dan arah tertentu yang diwakili oleh ruas garis berarah (vector) AB atau dengan suatu pasangan bilangan.
Sifat:
- Dua buah translasi berturut-turut é a ù diteruskan dengan
ë b û
dapat digantikan dengan é c ù translasi tunggal é a + c ù
ë d û ë b + d û
- Pada suatu translasi setiap bangunnya tidak berubah.
B. Pencerminan (Refleksi)
Transformasi yang memindahkan titik-titik dengan menggunakan sifat bayangan oleh suatu cermin.
Ket. : Ciri khas suatu matriks Refleksi adalah determinannya = -1
SIFAT-SIFAT
- Dua refleksi berturut-turut terhadap sebuah garis merupakan suatuidentitas, artinya yang direfleksikan tidak berpindah.
- Pengerjaan dua refleksi terhadap dua sumbu yang sejajar, menghasilkan translasi (pergeseran) dengan sifat:
- Jarak bangun asli dengan bangun hasil sama dengan dua kali jarak kedua sumbu pencerminan.
- Arah translasi tegak lurus pada kedua sumbu sejajar, dari sumbu
pertama ke sumbu kedua. Refleksi terhadap dua sumbu sejajar
bersifat tidak komutatip.
- Pengerjaaan
dua refleksi terhadap dua sumbu yang saling tegak lurus, menghasilkaan
rotasi (pemutaran) setengah lingkaran terhadap titik potong dari kedua
sumbu pencerminan. Refleksi terhadap dua sumbu yang saling tegak lures
bersifat komutatif.
Pengerjaan dua refleksi berurutan terhadap dua sumbu yang berpotongan akan menghasilkan rotasi (perputaran) yang bersifat:
- Titik potong kedua sumbu pencerminan merupakan pusat perputaran.
- Besar sudut perputaran sama dengan dua kali sudut antara kedua sumbu pencerminan.
- Arah perputaran sama dengan arah dari sumbu pertama ke sumbu kedua.
C. Perputaran (Rotasi)
D. Perkalian atau Dilatasi
E. Transformasi oleh suatu Matriks.
Transformasi yang memindahkan titik-titik dengan memutar titik-titik tersebut sejauh θ terhadap suatu titik
pusat rotasi.
Suatu rotasi dengan pusat P dan sudut rotasi θ dinotasikan dengan R (P, θ ).
Ket.: Ciri khas suatu matriks Rotasi adalah determinannya = 1
SIFAT-SIFAT
- Dua rotasi bertumt-turut mempakan rotasi lagi dengan sudut putardsama dengan jumlah kedua sudut putar semula.
- Pada suatu rotasi, setiap bangun tidak berubah bentuknya.
Catatan:
Pada transformasi pergeseran (translasi), pencerminan (refleksi) dan perputaran (rotasi), tampak bahwa bentuk bayangan sama dan sebangun (kongruen) dengan bentuk aslinya. Transformasi jenis ini disebut transformasi isometri.
Transformasi yang mengubah jarak titik-titik dengan factor pengali tertentu terhadap suatu titik tertentu.
Perkalian atau dilatasi ini ditentukan oleh factor skala (k) dan pusat dilatasi.
Ket.: (0, k) merupakan perbesaran atau pengecilan dengan tergantung dari nilai k.
Jika A' adalah peta dari A, maka untuk:a. k > 1 ® A' terletak pada perpanjangan OAb. 0 < k < 1 ® A' terletak di antara O dan Ac. k > 0 ® A' terletak pada perpanjangan AO
Jika A' adalah peta dari A, maka untuk:a. k > 1 ® A' terletak pada perpanjangan OAb. 0 < k < 1 ® A' terletak di antara O dan Ac. k > 0 ® A' terletak pada perpanjangan AO
Prinsipnya adalah mencari matriks invers dari matriks transformasi yang diketahui.
Tabel macam-macam Transformasi dan matriksnya :